viernes, 24 de febrero de 2012

Los ladrillos con los que se construye la vida

Los ladrillos con los que se construye la vida
Pero los compuestos orgánicos formados por Wöhler, Kolbe y Berthelot eran todos relativamente simples. Lo más característico de la vida eran las sustancias mucho más complejas, como el almidón, grasas y proteínas. Éstos eran menos fáciles de manejar; su exacta composición elemental no era tan fácil de determinar y en general presentaban el incipiente reino de la química orgánica como un problema realmente formidable.
Todo lo que podía decirse al principio de estas complejas sustancias era que podían escindirse en unidades o «ladrillos» relativamente simples, calentándolas con ácidos o bases diluidas. El pionero en este campo fue un químico ruso, Gottlieb Sigismund Kirchhoff (1764-1833). En 1812 logró convertir almidón (calentándolo con ácido) en un azúcar simple que llamó finalmente glucosa.
En 1820, el químico francés Henri Braconnot trató de la misma manera la gelatina y obtuvo el compuesto glicina. Se trata de un ácido orgánico que contiene nitrógeno y pertenece a un grupo de sustancias que Berzelius llamó aminoácidos. La misma glicina no fue sino el precursor de unos veinte aminoácidos diferentes, todos los cuales fueron aislados de proteínas durante el siglo siguiente.
Tanto el almidón como las proteínas poseían moléculas gigantes que estaban hechas (como finalmente se supo) de largas cadenas de unidades de glucosa o de aminoácidos, respectivamente. Los químicos del siglo xix pudieron hacer poco en el sentido de construir en el laboratorio tan largas cadenas. El caso fue distinto con las grasas.
El químico francés Michel Eugéne Chevreul (1786-1889) pasó la primera parte de una vida profesional increíblemente larga investigando las grasas. En 1809 trató jabón (fabricado por calentamiento de grasa con álcali) con ácido, y aisló lo que ahora se llaman ácidos grasos. Más tarde mostró que cuando las grasas se transforman en jabón, el glicerol se separa de la grasa.
El glicerol posee una molécula relativamente simple sobre la que hay tres puntos lógicos de anclaje para grupos de átomos adicionales. Hacia la década de 1840, por tanto, pareció bastante lógico suponer que mientras el almidón y las proteínas estaban formadas por un gran número de unidades muy sencillas, no ocurría lo mismo con las grasas. Podían construirse grasas con sólo cuatro unidades, una molécula de glicerol, más tres de ácidos grasos.
Aquí intervino Berthelot. En 1854 calentó glicerol con ácido esteárico, uno de los ácidos grasos más comunes obtenidos de las grasas, y se encontró con una molécula formada por una unidad de glicerol unida a tres unidades de ácido esteárico. Era la triestearina, que demostró ser idéntica a la triestearina obtenida a partir de grasas naturales. Este fue el producto natural más complicado sintetizado en aquella época.
Berthelot procedió a dar un paso aún más espectacular. En lugar de ácido estárico tomó ácidos que eran semejantes, pero que no se habían obtenido a partir de grasas naturales. Calentó estos ácidos con glicerol y obtuvo sustancias muy parecidas a las grasas ordinarias pero distintas a todas las grasas conocidas en la naturaleza.
Esta síntesis mostró que el químico podía hacer algo más que reproducir los productos de los tejidos vivos[2]. Podía ir más allá y preparar compuestos análogos a los orgánicos en todas sus propiedades, pero que no eran ninguno de los productos orgánicos producido en los tejidos vivos. Durante la segunda mitad del siglo xix estos aspectos de la química orgánica fueron llevados a alturas verdaderamente asombrosas. (Ver capítulo 10.)
No es de extrañar que hacia mediados del siglo xx la división de los compuestos en orgánicos e inorgánicos sobre la base de la actividad de los tejidos vivos se quedase anticuada. Existían compuestos orgánicos que nunca habían sido sintetizados por un organismo. No obstante, la división era todavía útil, puesto que quedaban importantes diferencias entre las dos clases, tan importantes que las técnicas de la química orgánica eran totalmente diferentes de las de la química inorgánica.
Empezó a verse cada vez más claro que la diferencia residía en la estructura química, puesto que parecían estar implicados dos tipos de moléculas totalmente distintos. La mayoría de las sustancias inorgánicas que manejaban los químicos del siglo XIX poseían pequeñas moléculas formadas por dos a ocho átomos. Había muy pocas moléculas inorgánicas que alcanzasen una docena de átomos.
Hasta las más sencillas de las sustancias orgánicas tenían moléculas formadas por una docena de átomos o más; la mayoría por varias docenas. En cuanto a las sustancias como el almidón y las proteínas, poseían literalmente moléculas gigantes que pueden contar sus átomos por cientos y aun cientos de miles.
No es de extrañar, pues, que las complejas moléculas orgánicas pudieran romperse fácilmente y de modo irreversible incluso por fuerzas ruptoras poco enérgicas, tales como el calentamiento suave, mientras que las moléculas inorgánicas sencillas se mantenían firmes incluso bajo condiciones muy duras.
También resultó cada vez más necesario señalar que todas las sustancias orgánicas, sin excepción, contenían uno o más átomos de carbono en su molécula. Casi todas contenían también átomos de hidrógeno. Como el carbono y el hidrógeno eran inflamables, no resultaba sorprendente que los compuestos de los que forman una parte tan importante fueran también inflamables.
Fue el químico alemán Friedrich August Kekulé von Stradonitz (1829-86), generalmente conocido como Kekulé, quien dio el paso lógico. En un libro de texto publicado en 1861 definió la química orgánica simplemente como la química de los compuestos de carbono. La química inorgánica era entonces la química de los compuestos que no contenían carbono, definición que ha sido generalmente aceptada. Sigue siendo cierto, no obstante, que algunos compuestos de carbono, entre ellos el dióxido de carbono y el carbonato cálcico, se parecen más a los compuestos típicos inorgánicos que a los orgánicos. Tales compuestos de carbono se tratan generalmente en los libros de química inorgánica.

lunes, 5 de diciembre de 2011

TABLA PERIODICA VS TABLA CUANTICA

TABLA PERIODICA VS TABLA ACUANTICA

La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos, conforme a sus propiedades y características; su función principal es establecer un orden específico agrupando elementos.

Suele atribuirse la tabla a Dmitri Mendeléyev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. La forma actual es una versión modificada de la de Mendeléyev; fue diseñada por Alfred Werner.

Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (p). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino–térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.



                    TABLA CUANTICA

Gracias a la tabla cuántica podemos saber como se configura cuánticamente un elemento. Por ejemplo: Al=1s 2 2s 2 2p 6 3s 2 3p 1 Para poder ayudarnos de la tabla cuántica primero tenemos que conocerla y saber como usarla. 1s 2 número de electrones subnivel nivel

  Nivel o número cuántico principal Número cuántico secundario Orientación magnética Subnivel energético Spin Número de electrones por orbital Elementos químicos .Para encontrar la configuración cuántica de un elemento se siguen los siguientes pasos. 1.- Localizar en la tabla cuántica el elemento con el que se trabajará. En este ejemplo usaremos el Aluminio (Al). Al Sigue tu camino de izquierda a derecha. Apunta el nivel, subnivel y número de electrones; del último elemento de cada grupo de color, que encuentres en tu camino; hasta llegar al elemento que se busca . 1s 2 2s 2 2p 6 3s 2 3p 1 = Al 13 Recuerda que cada color de los grupos de los subniveles te guían a su nivel. Ejemplo. El grupo encerrado en rojo pertenece al subnivel d y nivel 3. 1s 2 2s 2 2p 6 3s 2 3p 6 Usaremos ahora otro ejemplo, con el Cromo (Cr): Cr 24 4s 2 3d 4 Otro ejemplo : El Molibdeno con 42 electrones, no olvides que la suma de tus electrones (superíndices) indica el número de electrones. + + + + + + 4s 2 + 4p 6 + 5s 2 + 4d 4 = 3s 2 3p 6 3d 10 .



Comentario : La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos, conforme a sus propiedades y características.La tabla cuántica podemos saber como se configura cuánticamente un elemento.

viernes, 11 de noviembre de 2011

MATERIA Y ENERGIA -_-

                                                                                 delia_gutierrez/publicacion1/materia y                                                                                energia/15.oct.2011/1evc5.doc

El término energía (del griego ἐνέργεια/energeia, actividad, operación; ἐνεργóς/energos = fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento.
En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para extraerla, transformarla y darle un uso industrial o económico.

Materia es todo aquello que ocupa un lugar en el espacio, tiene una energía medible y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.
También se usa el término para designar al tema que compone una obra literaria, científica, política, etc. Esta distinción da lugar a la oposición "materia-forma", considerando que una misma materia, como contenido o tema, puede ser tratado, expuesto, considerado, etc. de diversas formas: de estilo, de expresión, de enfoque o punto de vista. Se usa también para hablar de una asignatura o disciplina en la enseñanza.

para mas informacion consulta las suiguientes paginas :

jueves, 3 de noviembre de 2011

experimento de fumar

Comprobar que el humo y los cigarros son nocivos para nuestros pulmones
Materiales:
  • Una botella pequeña
  • Una botella grande
  • Un globo
  • Una manguera transparente
  • Un tubo de plástico
  • Pegamento para plástico
Fundamento Teórico:
El tabaco de la planta del mismo nombre Nicotiana originaria de América en la actualidad formado por hojas de varias plantas del género , en concreto Nicotiana tabacum. Se consume de varias formas, siendo la principal por combustión produciendo humo. Su particular contenido en nicotina la hace muy adictiva. Se comercializa legalmente en todo el mundo, aunque en muchos países tiene numerosas restricciones de consumo, por sus efectos adversos para la salud pública.
Las hojas de esta planta se secan y luego se las deja fermentar para obtener los aromas y sabores deseados. El tabaco elaborado es básicamente de dos tipos: negro y rubio.
Este dispositivo que se ha dado en llamar “La maquina de fumar” ha sido diseñado por expertos de agrupaciones de lucha contra el cáncer y el tabaquismo.
Procedimiento:
1) Perfora dos veces la tapa de las dos botellas
2) Pasa la manguera transparente por los orificios de la tapa de la botella pequeña.
3) Coloca agua en el fondo de la botella pequeña y cierra la tapa de frascos.
4) Conecta la manguera con el orificio de la botella grande
5) Corta la base de la botella grande y coloca el globo cortado bien adherido a la botella con cinta adhesiva.
Funcionamiento:
Coloca el cigarrillo encendido en el orificio de la tapa de la botella pequeña
Empuja el globo hacia arriba y el aire saldrá por el orificio libre
Cierra con un dedo el orificio libre y tira de la bolsa hacia abajo. El aire y el humo realizaran el recorrido que marcan la flecha.
La nicotina y el alquitrán quedaran en el agua, y el humo en el resto de la botella. Repite las operaciones hasta que se consuma el cigarrillo por completo.
Observa el interior de la botella. Ese pequeño contenido podría quedar en las vías respiratorias y en el interior de los pulmones de cualquier fumador

martes, 1 de noviembre de 2011

Tabla periódica de los elementos

La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos, conforme a sus propiedades y características; su función principal es establecer un orden específico agrupando elementos.
Suele atribuirse la tabla a Dmitri Mendeléyev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. La forma actual es una versión modificada de la de Mendeléyev; fue diseñada por Alfred Werner.

Tabla periódica de los elementos

La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos, conforme a sus propiedades y características; su función principal es establecer un orden específico agrupando elementos.
Suele atribuirse la tabla a Dmitri Mendeléyev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. La forma actual es una versión modificada de la de Mendeléyev; fue diseñada por Alfred Werner.